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SUMMARY

A velocity–pressure algorithm, in primitive variables and finite differences, is developed for incompress-
ible viscous flow with a Neumann pressure boundary condition. The pressure field is initialized by
least-squares and updated from the Poisson equation in a direct weighted manner. Simulations with the
cavity problem were made for several Reynolds numbers. The expected displacement of the central vortex
was obtained, as well as the development of secondary and tertiary eddies. Copyright © 1999 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

A velocity–pressure algorithm for incompressible viscous flow is developed in primitive
variables by using finite differences, a Neumann boundary condition for the pressure and
without any iteration method for updating the pressure.

The incorporation of the Neumann condition for incompressible flow has been discussed in
detail in a remarkable work by Gresho and Sani [1]. From a mathematical point of view, the
system of equations governing an incompressible flow is singular with respect to the pressure.
There is no evolutive equation for the pressure. In practice, the system is usually considered as
the momentum equation subject to a solenoidal restriction for the velocity field. The initial and
boundary conditions are being prescribed only for the velocity field.

The discretization by difference methods of the Navier–Stokes equations on a staggered grid
[23], when formulated in matrix terms, allows the identification of a singular evolutive matrix
system. When the Poisson equation for the pressure is derived and its integration performed,
it can be observed that a clear influence of the Neumann condition arises. From this, a
non-singular system for determining the pressure values at the interior points can be extracted.
The initialization process of the pressure, by a least-squares procedure, somehow incorporates
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an optimal pressure as a starting point, instead of employing an arbitrary constant as it usually
does with iterative methods. The values of the velocity and pressure at interior points can be
well-determined by the forward Euler method for the velocity and by solving a non-singular
Poisson equation without iteration. The latter means that the values of the pressure and
velocity are incorporated as soon as they are computed.

The formulation of the present algorithm follows the unified operator approach introduced
by Casulli [2,20], which allows the consideration of, with minor modifications, the upwind and
semi-Lagrangean methods.

This velocity–pressure algorithm with central differences has been tested with the cavity
flow problem for a wide range of Reynolds numbers. The displacement of the central vortex
to the geometrical center of the cavity was obtained when increasing the Reynolds number, as
earlier established by Burgggraf [3], Ghia et al. [4] and Schreiber and Keller [5] among others;
also the development of secondary and tertiary vortices.

2. THE CONTINUUM EQUATIONS FOR INCOMPRESSIBLE FLOW

In this section a brief account of the prescription of the Neumann condition is given, as
performed by Gresho and Sani [1]. The Navier–Stokes equations for the velocity u(x, t) and
pressure p(x, t) with initial and boundary conditions for the velocity, constitute the system

(u
(t

+u ·9u+9p=n92u, t\0, (1)

9 ·u=0, (2)

u(x, 0)=u0(x), x in V( =V�G, (3)

u=w(x, t) in G=(V. (4)

Here V denotes a limited two-dimensional region, with G as its boundary, and

9 ·u0=0 in V (5)

is an initial solenoidal velocity field. From the above system, the initial normal velocity follows
as

u0 ·n=w(x, 0)·n on G, (6)

and the global mass conservation as&
G

u ·n dx=0. (7)

It is observed that no initial nor boundary conditions are prescribed for the pressure. Thus,
p is determined up to an additive constant corresponding to the level of hydrostatic pressure.

The conditions of an initial velocity field solenoidal and normal velocity compatible with the
above boundary conditions are required for the problem to have a well-defined, unique and
solenoidal solution for all t]0 [6]. The initial tangential velocity field is not required to be
compatible with the boundary conditions. If so, then the solution may be smoother [1].

By assuming adequate differentiability hypotheses, the Poisson equation can be derived by
taking the divergence of the momentum equation and using the vector identity

92u=9(9 ·u)−9×9×u. (8)

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 1009–1026 (1999)



INCOMPRESSIBLE VISCOUS FLOW 1011

Therefore,

9 · (u ·9u)+92p=
�

n92U−
(U
(t

�
in V, (9)

where U=9 ·u.
Since the prescribed conditions for u in G are valid everywhere in time, i.e.

9 ·u=0 in V( for t]0, (10)

they can be substituted into the equation for U and the Poisson equation for the pressure can
be obtained

92p= −9 · (u ·9u) in V for t]0. (11)

Consider the equivalent equation

92p=9 · (n92u−u ·9u). (12)

In order to complete the specification of the problem for the pressure, boundary conditions
should be imposed for the pressure on G. Since the last two equations have been derived, the
boundary conditions should be also derived. One obvious manner is to set the momentum
equation as valid on the boundary. However, this is a vector equation and only one scalar
boundary condition is required. Either the normal or the tangential projection of the
momentum equation upon G can be chosen. The first option gives

n ·9p=
(p
(n

=n92un−
�(un

(t
+u ·9un

�
in G for t]0. (13)

Thus, Equations (11), (12) and (13) constitute a Neumann problem for the pressure.
On the other hand, the tangential component of the momentum equation upon G gives a

Dirichlet condition of type

t ·9p=
(p
(t

=n92ut−
�(ut

(t
+u ·9ut

�
, (14)

where the value of p on G, i.e. Dirichlet data, is provided for by integration of (14) through
t.

The determination of the solution of the Poisson equation (11) with Neumann boundary
conditions (13) requires holding the compatibility relationship&&

V
92p dV=

&&
V

−9 · (u ·9u) dV=
7

G
pn dG, (15)

where pn=n ·9p and n is an exterior normal unit vector to G.

3. DISCRETIZATION OF THE NAVIER–STOKES EQUATIONS

For a non-dimensioned two-dimensional incompressible viscous flow, the primitive equations
are

(u
(t

+u
(u
(x

+6
(u
(y

= −
(p
(x

+
1

Re
�(2u
(x2+

(2u
(y2

�
, (16)
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(6

(t
+u
(6

(x
+6
(6

(y
= −

(p
(y

+
1

Re
�(26

(x2+
(26

(y2

�
, (17)

(u
(x

+
(6

(y
=0, (18)

where u(x, y, t) and 6(x, y, t) denote the velocity components in the x- and y-directions,
p(x, y, t) the pressure and Re]0 the Reynolds number respectively. This system can be
written in the operator compact form

M
(U
(t

+NU= −PU+LU, (19)

where

U=Ã
Æ

È

u
6

p
Ã
Ç

É
, M=Ã

Æ

È

1
0
0

0
1
0

0
0
0
Ã
Ç

É
,

N=Ã
Ã

Ã

Ã

Ã

Æ

È

�
u
(

(x
+6

(

(y
�

0

0

0�
u
(

(x
+6

(

(y
�

0

0

0

0

Ã
Ã

Ã

Ã

Ã

Ç

É

, P=Ã
Ã

Ã

Ã

Ã

Æ

È

0

0

0

0

0

0

(

(x
(

(y

0

Ã
Ã

Ã

Ã

Ã

Ç

É

,

L=Ã
Ã

Ã

Ã

Ã

Æ

È

1
Re

� (2

(x2+
(2

(y2

�
0

(

(x

0

1
Re

� (2

(x2+
(2

(y2

�
(

(y

0

0

0

Ã
Ã

Ã

Ã

Ã

Ç

É

.

Central differences will now be used for approximating the spatial derivatives. For simplic-
ity, the formulation will be restricted to a rectangular staggered grid (Figure 1).

Setting Dxi=Dx, i=0, . . . , n and Dyj=Dy, j=0, . . . , m, let

ui, j=u(iDx, ( j+1
2)Dy),

6i, j=6((i+
1
2)Dx, jDy),

pi, j=p((i+1
2)Dx, ( j+1

2)Dy),

write Equations (16) and (17) as

(u
(t

=F1(u, 6)−G1(p), (20)

(6

(t
=F2(u, 6)−G2(p) (21)
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INCOMPRESSIBLE VISCOUS FLOW 1013

respectively, then apply spatial central differences. It turns out that

F1(u, 6)= −ui, j

ui+1, j−ui−1, j

2Dx
−6 �ui, j

ui, j+1−ui, j−1

2Dy

+
1

Re
�ui+1, j−2ui, j+ui−1, j

Dx2 +
ui, j+1−2ui, j+ui, j−1

Dy2

�
, (22)

F2(u, 6)= −u �6i, j

6i+1, j−6i−1, j

2Dx
−6i, j

6i, j+1−6i, j−1

2Dy

+
1

Re
�6i+1, j−26i, j+6i−1, j

Dx2 +
6i, j+1−26i, j+6i, j−1

Dy2

�
. (23)

Similarly,

G1(p)=
pi, j−pi−1, j

Dx
, (24)

G2(p)=
pi, j−pi, j−1

Dy
. (25)

Here 6 �ui, j
and u �6i, j

denote the average values

6 �ui, j
=
6i, j+1+6i, j+6i+1, j+1+6i+1, j−1

4
(26)

and

u �6i, j
=

ui, j+1+ui, j+ui+1, j+1+ui+1, j+1

4
. (27)

3.1. Matrix formulation

The above spatial discretization procedure, together with the pressure Neumann condition,
for the Navier–Stokes equations on a rectangular staggered grid amounts, in matrix terms, to
replace (19) by the spatial approximation [17]

Figure 1. Staggered grid.
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M
dU

dt
+N(U)U+NF(U, UF)UF= −PU−PF(U, UF)+LU+LFUF. (28)

Here U= [Ui,j ], where Ui,j includes the values ui+1/2,j, 6i,j+1/2, pi,j at a cell (i, j ). The vector
UF corresponds to the boundary values of u, 6 and p. The matrices M, N, L, P are the
corresponding spatial approximation of the continuous terms and NF, LF, PF are matrices that
contain boundary values. The above systems are singular once M is a singular matrix [18].

If an upwind approximation is used for the velocity field and central differences are kept for
the pressure gradient, it will turn out that the matrix formulation reads [19],

M
dU

dt
+N(U, UF)U+NF(U, UF)UF= −PU−PF(U, UF)+LU+LFUF. (29)

From such equations, it is observed that although the N matrix is different for each method,
there is a direct influence of boundary values on the non-linear convection matrix when
discretized by the upwind method. This is not the case for central differences, and in numerical
terms it means that boundary values do not interfere with the numerical convection at interior
points.

The above matrix formulation will be of a similar nature for non-rectangular domains.

3.2. Time discretization

The time discretization of the momentum equations, besides modifying the order of
approximation, raises numerical stability problems. Although implicit methods have better
stability properties, they are expensive to implement. In this paper, the explicit Euler or
Adams–Bashforth methods will be used.

The Adams–Bashforth method, applied to Equations (20) and (21), can be written as

uk+1=uk+Dt %
np−1

l=0

al [F1(u, 6)−G1(p)], (30)

6k+1=6k+Dt %
np−1

l=0

al [F2(u, 6)−G2(p)], (31)

where k= t/Dt represents the time steps and the coefficients np and a1 define a specific method:
np=1, a0=1 (first-order forward Euler); np=2, a0=

3
2, a1= −1

2 (second-order Adams–Bash-
forth); and np=3, a0=

23
12, a1= −4

3, a2=
5
12 (third-order Adams–Bashforth).

4. THE CORRECTED PRESSURE EQUATION

Gresho and Sani [1] derived an equation for pressure in such a way that for 9 ·u0=0, the
system given by Equations (1) and (2) can be replaced by

(u
(t

+u ·9u+9p=
1

Re
92u, (32)

92p=9 ·
� 1

Re
92u−u ·9u

�
, (33)

where the boundary condition for p is given by

n ·9p=
(p
(n

=
1

Re
92un−

�(un

(t
+u ·9un

�
for t]0. (34)
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INCOMPRESSIBLE VISCOUS FLOW 1015

The discretization of the pressure equation, being a derived one, requires special care in
order to control the accumulation of numerical errors that might invalidate the continuity
equation. This means there is a need to introduce corrective terms into the pressure equation.

Consider the momentum equations discretized as

ui, j
k+1=ui, j

k +Dt %
np+1

l=0

al [F(ui, j
k− l)−9pi, j

k− l], (35)

where np and a1 depend upon the employed Adams–Bashforth method, F(uk) being the
discretization operator of the convective and diffusive terms.

Applying the divergence operator to both sides of (35) results in

9 ·ui, j
k+1=9 ·ui, j

k +Dt %
np−1

l=0

al [9 ·F(ui, j
k− l)−92pi, j

k− l]. (36)

The incompressibility condition at the (k+1)th time step, 9 ·uk+1=0, is then characterized
by

92pi, j
k =9 ·F(ui, j

k− l)+
9 ·ui, j

k+1

a0Dt
+

1
a0

%
np−1

l=0

al [9 ·F(ui, j
k− l)−92pi, j

k− l]. (37)

It is observed that, for the Euler method, the above correction coincides with the dilatation
term Dt=9 ·un/Dt [7–9].

Equation (37) can be written in the compact form

92pk=9 ·H(uk), (38)

where

H(uk)=F(uk)+
uk

a0Dt
+

1
a0

%
np−1

l=0

al [F(uk− l)−9pk− l]. (39)

Now, the Laplacian of the pressure is discretized with second-order central differences on a
staggered grid

92pi, j:
pi−1, j+pi, j−1−4pi, j+pi+1, j+pi, j+1

h2 , (40)

where h=Dx=Dy. Thus, Equation (38) becomes

pi−1, j+pi, j−1−4pi, j+pi+1, j+pi, j+1=h(H1i+1, j
−H1i, j

+H2i, j
−H2i, j

), (41)

where H1i,j
and H2i,j

are the x and y components of H(u) respectively, applied at the points
(iDx, ( j+1

2)Dy) for the first component and ((i+1
2)Dx, jDy) for the second one.

For good convergence of the discretized Poisson equation with a Neumann condition, the
compatibility relationship (15) must hold exactly on the discretized domain, i.e. [10,16]

%
i, j�V

92pi, j= %
i, j�G

(pi, j

(h
. (42)

By adding (41) for all points of the square domain, you have

%
n−1

i=1

%
m−1

j=1

pi−1, j+pi, j−1−4pi, j+pi+1, j+pi, j+1

=h %
n−1

i=1

%
m−1

j=1

H1i+1, j
−H1i, j

+H2i, j+1
−H2i, j

, (43)

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 1009–1026 (1999)



J.R. CLAEYSSEN ET AL.1016

and by making simplifications, you obtain

%
m−1

j=1

(p0, j−p1, j−pn−1, j+pn, j)+ %
n−1

i=1

(pi,0−pi,1−pi,m−1+pi,m)

=h %
m−1

j=1

(H1n, j
−H11, j

)+h %
n−1

i=1

(H2i,m
−H2i,1

). (44)

Then the discrete Neumann condition holds for

p0, j=p1, j−hH11, j
, (45)

pn, j=pn−1, j+hH1n, j
, (46)

pi,0=pi,1−hH2i,1
, (47)

pi,m=pi,m−1+hH2i,m
. (48)

It should be observed that these boundary conditions are discretizations of (34).

5. THE VELOCITY–PRESSURE ALGORITHM

An algorithm for integrating the Navier–Stokes equations is now presented. First, the pressure
is initialized by solving a singular system that arises from the discretization of the pressure
equation with the Neumann conditions. Second, the momentum equations are solved for the
velocity field at each time step. Third, the pressure is updated by solving a Poisson equation,
giving a special treatment for the interior points that correspond to interior cells and to the
adjacent cells in such a way that the compatibility condition is verified. This updating contains
corrective terms for the direct calculation of the pressure at interior points of interior cells.
This is done by incorporating the already known pressure values at neighboring points.

5.1. Pressure initialization

To initialize the pressure, Equation (38) is considered with k=0

92p0=9 ·H(u0). (49)

Here we use np=1 and a0=1, as 9 ·u0=0, H(u0)=F(u0). No corrective term appears on the
initialization, and the discretize boundary conditions are (45)–(48).

Equation (49), discretized as in (41) associated to the boundary conditions, when written in
matrix terms is

Ap0=b, (50)

where A is the singular matrix

A=Ã
Ã

Ã

Ã

Ã

Æ

È

S1

I
I

S2

I
I

S2

· · ·

I
· · ·
I

· · ·
S2

I
I

S1

Ã
Ã

Ã

Ã

Ã

Ç

É(m×n)× (m×n)

,
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Figure 2. Pressure molecule.

with

S1=Ã
Ã

Ã

Æ

È

−2
1

1
−3
· · ·

1
· · ·
1

· · ·
−3
1

1
−2

Ã
Ã

Ã

Ç

Én×n

, S2=Ã
Ã

Ã

Æ

È

−3
1

1
−4
· · ·

1
· · ·
1

· · ·
−4
1

1
−3

Ã
Ã

Ã

Ç

Én×n

and I is the identity matrix of order n.
At time k=0, the vector p0 contains the values of the pressure at interior points, i.e.

p0= [p1,1
0 p2,1

0 · · ·pn,1
0 p1,2

0 · · ·p2,2
0 · · ·pn,2

0 · · ·p1,m
0 p2,m

0 · · ·pn,m
0 ]T.

The vector b contains all values ni,j
0 , 6 i,j

0 from the right-hand-side of (45)–(48), which are
given initial values, and this has the particular form

b= [0· · ·0 bmn−n+1 0· · ·0 bmn ]m×n
T ,

where

bmn−n+1=
2n

h
and bmn= −

2n

h
.

Hence, b is a non-zero vector.
The above singular system can be solved by several methods: least-squares, iterative or LU

[25,22,21].

5.2. The one-step pressure updating

Once the pressure is initialized, the interior pressure values pi,j at time t+Dt are computed
with the following one-step and explicit scheme (Figure 2):

pi, j
k+1=

1
4

[pi−1, j
k+1 +pi, j−1

k+1 +pi+1, j
k +pi, j+1

k ]−
h2

4
9 ·H(ui, j

k+1), (51)

which incorporates by simple averaging, old and new values for the pressure.
This updating of the pressure field can written in matrix terms as

Bpk+1+Cpk= −Q(uk+1), (52)

where

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 1009–1026 (1999)
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B=Ã
Ã

Ã

Æ

È

B1

I B1

I B1

· · ·
· · ·
I B1

Ã
Ã

Ã

Ç

É

and C=Ã
Ã

Ã

Æ

È

C1 I
C1 I

C1
· · ·
· · · I

C1

Ã
Ã

Ã

Ç

É

,

with

B1=Ã
Ã

Ã

Æ

È

−4
1 −4

1 −4
· · ·

· · ·
1 −4

Ã
Ã

Ã

Ç

É

and C1=Ã
Ã

Ã

Æ

È

0 1
0 1

0 · · ·
· · · 1

0

Ã
Ã

Ã

Ç

É

,

where B and C are matrices of order ((m−2)× (n−2))× ((m−2)× (n−2)), B1 and C1 of
order (n−2)× (n−2) and I is the identity matrix of order (n−2).

The term Q(uk+1) contains the velocity and corrective terms of (51). The above matrix
equation for updating the pressure must not be considered as being iterative. It is just a
compact form of writing (51).

5.3. Velocity–pressure algorithm

The algorithm for solving an incompressible viscous flow with prescribed Neumann condi-
tions for the pressure is given as follows:

1. Introduction of the initial velocity components at time t0=0, corresponding to level k=0,
and the boundary conditions for the velocity field.

2. Initialization of the pressure by solving a singular linear system of the type

Ap0=b

through least-squares, iterative or LU decomposition.
3. Computation of the velocity field ui,j

k+1 and 6 i,j
k+1 by using (30) and (31) respectively.

4. Computation of the pressure p at time level k+1 through (51).
5. Updating of the pressure and velocity field by setting pk+1 instead of pk and uk+1 instead

of uk.
6. Perform steps (3)–(5) for k=1, 2, . . .
7. End the calculations.

Remarks

1. This algorithm computes corrected pressure values at interior points without any iteration.
2. The algorithm can handle non-rectangular geometries. The only modifications are related

to boundary rows and columns of matrices A, B and C, the non-linear term Q and the
initial vector b. In this work, for simplicity and numericals with a broad range of Re, the
algorithm was set up from a two-dimensional square cavity discussion. However, simula-
tions were made for cavities with a non-rectangular bottom.

3. The above algorithm have been successfully employed with three-dimensional rotating
convective flow and with the inclusion of viscoelastic terms. It is a matter of a forthcoming
paper.
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5.4. Extension to three-dimensional domains

The case of a three-dimensional cubic cavity can be easily handled. For a velocity field
u= (u, 6, w) on a staggered grid, consider

uix,iy,iz
=u(ixDx, (iy+

1
2)Dy, (iz+

1
2)Dz),

6ix,iy,iz
=6((ix+1

2)Dx, iyDy, (iz+
1
2)Dz),

wix,iy,iz
=w((ix+1

2)Dx(iy+
1
2)Dy, izDz),

pix,iy,iz
=p((ix+1

2)Dx, (iy+
1
2)Dy, (iz+

1
2)Dz).

The discretized momentum equations read

uix,iy,iz
k+1 =uix,iy,iz

k +Dt %
np−1

l=0

al [F(uix,iy,iz
k−1 )−9pix,iy,iz

k−1 ], (53)

where the operator F has a similar meaning to that in the two-dimensional case.
The equation for the pressure. including correcting terms, becomes

92pix,iy,iz
k =9 ·F(uix,iy,iz

k )+
9 ·uix,iy,iz

k

a0Dt
+

1
a0

%
np−1

l=0

al [9 ·F(uix,iy,iz
k− l )−92pix,iy,iz

k− l ]. (54)

The discretization of the Laplacian operator on a cubic cavity by second-order central
differences and the fulfillment of the discrete compatibility relationship lead to the one-step
and explicit scheme

pix,iy,iz
k+1 =

1
6

[pix−1,iy,iz
k+1 +pix,iy−1,iz

k+1 +pix,iy,iz−1
k+1 +pix+1,iy,iz

k +pix,iy+1,iz
k +pix,i,iz+1

k ]

−
h2

6
9 ·H(uix,iy,iz

k ), (55)

where

H(uk)=F(uk)+
uk

a0Dt
+

1
a0

%
np−1

l=1

al [F(uk− l)−9pk−1]. (56)

Here h=Dx=Dy=Dz.

Figure 3. Driven cavity flow: (a) rectangular; (b) curved.
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Figure 4. Streamlines: (a) Re=100; (b) Re=1000; (c) Re=5000.

6. NUMERICAL SIMULATIONS

Consider the incompressible viscous flow within a cavity that is induced by the shear
movement of the upper wall, with uniform horizontal velocity uT=1, and keeping fixed the
other walls. The driven cavity flow is often employed for testing and comparing numerical
techniques for solving the Navier–Stokes equations [2,11–13,24] (Figure 3).

The horizontal velocity boundary conditions are

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 1009–1026 (1999)



IN
C

O
M

P
R

E
SSIB

L
E

V
ISC

O
U

S
F

L
O

W
1021

C
opyright

©
1999

John
W

iley
&

Sons,
L

td.
Int.

J.
N

um
er.

M
eth.

F
luids

30:
1009

–
1026

(1999)

Figure 5. Velocity profiles: (a) x=0.5; (b) y=0.5.
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u(x, 0, t)=6(0, y, t)=6(X, y, t)=0, u(x, Y, t)=uT=1,

and the normal velocity conditions are

u(0, y, t)=u(X, y, t)=6(x, 0, t)=6(x, Y, t)=0,

where X and Y are the linear dimensions of the cavity. It shall be assumed that at time t0=0
the velocity field is zero.

Figure 6. Non-uniform grid: (a) grid 50×50; (b) normalized velocity field; (c) streamlines.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 1009–1026 (1999)
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Figure 7. Curved cavity: (a) Re=10; (b) Re=400; (c) Re=1000; (d) Re=2000.

The governing equations were considered in non-dimensional form for

x̄=
x
X

, ȳ=
y
X

, ū=
u
uT

, 6̄=
6

uT

, t( = tuT

X
, p̄=

p
ruT

2 , Re=
uTX

n
.

The simulations were performed for Re=100, 1000 and 5000 and compared with the results
of Ghia et al. [4]. Figure 4 shows the streamlines and the appearance of the primary vortex,
the secondary and tertiary vortices at the lower and upper left corners of the cavity. Figure 5
shows the velocity profiles at the centerlines of the cavity (y=0.5 and x=0.5) compared with
those of Ghia et al. [4]. For Re=100 and 1000, it was enough to consider a 66×66
non-uniform grid, refined at the walls, while for Re=5000, a 130×130 refined grid was
considered. However, good results can be obtained with smaller refined grids. Figure 6 shows
the flow for Re=7000 with a refined grid of 50×50.

The proposed algorithm was derived, for simplicity, with a rectangular domain. However, it
works too with more complex geometries, as shown by the simulations made for a curved
cavity. Figure 7 exhibits the results for a parabolic bottom with Re=10, 400, 1000 and 2000.

In order to test the non-iterative one-step pressure updating for three-dimensional domains,
a cubic cavity was considered. Although the geometry is relatively simple, the flow is quite
complex and appropriate for testing computational codes [14].

Figure 8 shows the flow for Re=400 with a grid 60×60×60. It can be observed from the
upper and frontal views that the flow exhibits some kind symmetry, which is to be expected
from the boundary conditions. Some authors [15] make use of this observation for reducing
the computational time. However, there was no need to such a device in the present
computation. The reason being that the aim was to observe if such symmetry could be detected

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 1009–1026 (1999)
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with the proposed non-iterative pressure algorithm, which does not need to update the pressure
in a symmetric way.

The pattern of the streamlines for a cubic cavity is certainly more complex than the
two-dimensional case. It can be observed from Figure 9 that the flow moves between the wall
and the center of the cavity besides circulating around the axis of the main vortex. Plate 1
illustrates isobaric surfaces. The pressure at the interior of the cavity is near zero and the
extreme values are obtained at the upper corners. The negative values of the pressure being at
the upper left corner and center of the vortex, while the positive ones occur at the bottom and
upper right corner of the cavity.

7. CONCLUSIONS

An algorithm has been developed for the numerical solution of the incompressible Navier–
Stokes equations with a central difference scheme in primitive variables and the Neumann
boundary condition for the pressure on a staggered grid. The algorithm solves without any
iteration a Poisson equation that is transient due to the Neumann condition for the pressure.

Figure 8. Cubic driven cavity flow at Re=400: (a) perspective; (b) lateral view; (c) upper view; (d) frontal view.
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Plate 1. Driven cavity isobaric surfaces at Re=400.
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Figure 9. Driven cavity streamlines at Re\400: (a) perspective; (b) lateral view; (c) upper view; (d) frontal view.

This algorithm was tested with the driven cavity flow problem for several Reynolds
numbers, uniform and non-uniform grids, curved domains and a three-dimensional cubic
cavity. The aparition of the central vortex and the recirculation with secondary and tertiary
eddies were observed. As the Reynolds number increases, the central vortex moves toward the
geometrical center of the cavity as shown before by Burggraf [3], Ghia et al. [4] and Schreiber
and Keller [5].

The matrix formulation allows the influence of the Neumann conditions to be followed for
the pressure when integrating the velocity and pressure fields at interior points. A correction
of the pressure equation was introduced, and for increasing the time step and to diminish the
number of iterations, other time integration methods can be used.

The formulation of the current algorithm follows the unified operator approach introduced
by Casulli [2], which allows the consideration of, with minor modifications, the upwind and
semi-Lagrangean methods.

Numerical simulations were carried out for a broad range of Reynolds numbers. The results
were compared with the existing solutions [4] showing a very good agreement. Besides this,
simulations done for the cubic and parabolic cavities illustrating that the algorithm can handle
three-dimensional and non-rectangular domains.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 1009–1026 (1999)
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